Faculty - دانشکده فنی و مهندسی
Associate Professor
Update: 2025-11-18
Hamid Esfahani
Faculty of Engineering / Department of Materials Science Engineering
P.H.D dissertations
-
سنتز و مطالعه داربستهای نانوساختار پیزوالکتریک PVDF با افزودنی نانوذرات سرامیکی وعوامل بیولوژی برای کاربرد در مهندسی بافت
2024درمان بیماران سرطانی به کمک روش درمانی هایپرترمیا یک روش موثر است. اخیراْ تلاشهای بسیاری بر بهبود خواص مطلوب مواد گرماده این روش گزارش شده است. این پژوهش به ساخت داربست نانوساختار با خواص فروالکتریک و فرومغناطیس با بهرهگیری از مواد سرامیکی و پلیمری برای درمان هایپرترمیا میپردازد. داربست بهروش الکتروریسی و با زمینه فروالکتریک پلی (وینیلیدین فلوراید) ( PVDF) و نانوذرات مغناطیس اکسید فریت کبالت(CoFe_2 O_4;CFO) به صورت درجا در الیاف سنتز شدند. این پژوهش در سه فاز انجام شد؛ ۱- بهینه سازی فرایند الکتروریسی برای تولید داربست هیبریدی، ۲- بهینه سازی مقدار وزنی CFO (کسر درصد وزنی X) در داربست برای مطلوب ترین خواص هایپرترمیا و ۳- توازی سازی الیاف با نمونه بهینه برای بهبود رفتار هایپرترمیا. در فاز نخست مقدار ۱5 درصد وزنی PVDF و شرایط الکتروریسی kV ۲5 ، cm ۱0 و ml/h ۱ برای رسیدن به 80% فاز فروالکتریک بتا(β) بهینه شد. در فاز دوم مقدار X از 0 تا ۱0 در الیاف تغییر کرد و ریزساختار، مورفولوژی، خواص دیالکتریک، مغناطیس و پیزوالکتریک مورد بررسی قرارگرفت. تشکیل CFO به صورت درجا به کمک طیف سنجی پراش انرژی پرتو ایکس (EDS) و پراش پرتو ایکس (XRD) بررسی و تایید شد. نتایج نشان داد ذرات CFO در درون و محل تقاطع الیاف قرارگرفتند) 2<X<0 (در حالیکه به صورت آگلومره متصل به الیاف بزرگتر تشکیل شدند) 10<X<2(. بیشینه مقدار فاز β برای داربست با X برابر ۱ بهدست آمد که دارای مقداری برابر 7۳5/ 0 و 960/ 0 به ترتیب محاسبه شده از روش XRD و طیف سنجی مادون قرمز فوریه (FTIR) بود. خواص دیالکتریک، مغناطیس و پیزوالکتریک داربست با تشکیل درجا CFO افزایش یافت. بیشینه مقدار وادارنگی میدان مغناطیس و حساسیت پیزوالکتریک برای داربست با X برابر ۱ بهدست آمد. بررسی آزمونهای برون تنی (In-vitro) خونسازگاری و آنتیاکسیدانت نشان داد که مطلوب ترین رفتار برای داربست با X برابر ۱ است. با بررسی تغییرات دمای داربستها در میدان مغنطیسی متناوب (AMF) مشخص شد که کلیه داربستهای حاوی CFO رفتار هایپرترمیا دارند، اما بیشینه مقدار نرخ جذب ویژه (SAR) برابر W/g ۳7-44 و افت ذاتی توان ( ILP ) برابر nH.m²/kg 8 - 9 برای داربست با X برابر ۱ و ۲ بهدست آمد. در فاز نهایی پژوهش، داربست با 1= Xبه عنوان نمونه بهینه در مقایسه با نمونه داربست (PVDF ) با 0=X مجدد با الکتروریسی روی جمعکننده دوار (سرعت های rpm ،۱800 ۳600 و 6000) سنتز شدند. ریزساختار، فاز شناسی و خواص دیالکتریک، مغناطیس و پیزوالکتریک داربستها ارزیابی شد. نتایج نشان داد که بیشنه توازی شدن الیاف و کاهش قطر الیاف nm) ۱40-۱۲0 (در سرعت rpm 6000 حاصل شد. همچنین مشخص شد بیشنه فاز β (برابر 980/0) برای داربست با X برابر ۱ در سرعت rpm 6000 بهدست آمد. ضریب دیالکتریک، خواص مغناطیسی و حساسیت پیزوالکتریک نیز برای هر دو داربست (۱ و 0 =X ) با افزایش سرعت جمع کننده (توازی شدن الیاف) بیشتر شد. در نهایت بیشینه خواص هایپرترمیا در داربست با 1=X در سرعت rpm 6000 مشاهده شد. همچنین در بخش تست سمیت سلولی، مشخص گردید که در سلول نرمال، هر دو داربست (۱ و 0 =X ) در مدت زمان 24 و 48 ساعت رشد سلولها را نشان دادند که نشان از زیستسازگار بودن داربستها میباشد و در سلول سرطانی داربست (0 =X ) همچنان رشد سلول را پس از 24 و 48 ساعت نشان داد که نشان از عدم توانایی داربست در از بین بردن سلول سرطانی است اما در داربست (۱ =X ) پس از 24 ساعت و 48 ساعت کاهش معنادار رشد سلول سرطانی نشان داده شد که نشان از توانایی این داربست در از بین بردن سلول سرطانی و مناسب کاربرد هایپرترمیاست. یافتههای این پژوهش نشان میدهد که با کنترل تشکیل CFO در محل در داربست الکتروریسی PVDF، فرایند درمانی ریشهکنی سلولهای سرطانی را میتوان با حداقل دوز کامپوزیت مغناطیسی فروالکتریک-فرومغناطیسی انجام داد.
-
سنتز و بررسی خواص پیزو الکتریک و آکوستیک PZTنانو ساختار خالص و آلائیده شده برای کاربرد در حسگ
2024امروزه حسگرهای صوتی نقش بسیار مهمی در تشخیص آسیب در سازهها (SHM) پیش از وقوع تخریب دارند. علاوه بر این حسگرهای صوتی در توسعه برداشت کنندههای انرژی صوتی (AEH) از منابع هدر رفت صدا مانند نویزها در ترافیک، ورزشگاهها، ایستگاه قطار و غیره نقش بسزایی دارند. با معرفی و توسعه مواد نانو ساختار بر پایه تیتانات زیرکونات سرب (PZT) این امر میتواند با بهرهوری بیشتر انجام شود. در پژوهش حاضر در سه فاز؛ ۱- سنتز نانو ساختارهای PZT خالص و آلائیده با Nb و Nd به روش الکترویسی و کلیسناسیون، ۲- رفتار آکوستیک داربستهای منعطف پلی وینیلیدین فلوراید (PVDF) حاوی نانو ساختارها و ۳- نقش مقدار نانو ساختارهای PZT غیر استوکیومتری بر برداشت انرژی آکوستیک داربست-های منعطف PVDF، اهداف مذکور مورد بررسی قرار میگیرند. با آلایش Nb و Nd بهطور انفرادی و همزمان در ترکیب Pb(Zr0.52Ti0.48)O3 الیاف صاف و بدون عیب با متوسط قطر الیاف 82 ± 292 نانومتر پس از الکتروریسی سنتز شدند. الیاف پس از کلسیناسیون به نانو ویسکر تغییر شکل یافتند. آلایش همزمان Nb و Nd نهتنها منجر به افزایش نسبت l/d ویسکر شد، بلکه بیشترین بینظمی ساختاری و ترکیب نزدیک به مرز مورفوترومپیک (MPB) که دلیل مشاهده بیشترین رفتار دیالکتریک (21642)، حساسیت پیزوالکتریک (mV/N 69/7) و مغناطیس (Oe 492) است، حاصل شد. همچنین مطالعات نشان داد که Nb تمایل به تشکیل PZT غنی از Zr (ساختار رومبوئدرال) و Nd تمایل به تشکیل PZT غنی از Ti (ساختار تتراگونال) دارد. در فاز دوم، به کمک روش الکتروریسی، نانو ساختارهای خالص و آلائیده شده PZT در درون یا به صورت خوشه متصل به الیاف در داربست PVDF سنتز شدند. نتایج نشان داد که آلایش همزمان Nb و Nd منجر به بیشترین افزایش فاز β (8/79 درصد) در ساختار PVDF شد که حساسیت پیزوالکتریک (mV/N 071/1) از آن منتج شد. با بررسی رفتار آکوستیک داربستها شامل ضریب جذب صوت (α) و ضریب کاهش نویز (NRC)، مشخص شد که نانو ساختارهای PZT آلائیده شده بهطور همزمان با Nb و Nd بیشترین اثر بر جذب صدا را دارند. از این رو در فاز سوم پژوهش از نانو ساختارهای PZT غیر استوکیومتری (آلائیده شده با Nb و Nd بهطور همزمان) بهعنوان نانو ژنراتور (PENG) در رفتار AEH داربستهای منعطف بر پایه PVDF استفاده شد. با تغییر مقدار PENG (برابر 5/2، 5 و 10 درصد وزنی) مورفولوژی الیاف تغییر یافت. در ترکیب شامل 5/2 درصد PENG توزیع همگن نانو ساختارها درون الیاف مشاهده شد. همچنین بیشینه فاز β، حداکثر حساسیت پیزوالکتریک (V/N 95/1) و مغناطیس (Oe 750) و کمترین مقاومت سطحی (kΩ/sq 2/1) داربست در این مقدار مشاهده شد. بررسی نتایج فرایند برداشت انرژی آکوستیک نشان داد که بیشترین چگالی توان خروجی (W/g 0822/0) در فشار صوتی 90 دسیبل و فرکانس 2000 هرتز توسط داربست منعطف PVDF حاوی 5/2 درصد وزنی نانو ساختارهای PZT غیر استوکیومتری (آلائیده شده با Nb و Nd بهطور همزمان) قابل استحصال است. با توجه به یافتههای این پژوهش، میتوان نانو ساختارهای PZT غیر استوکیومتری را بهعنوان یک عامل مؤثر در حسگرهای صوتی و برداشت گر انرژی آکوستیک پیشنهاد کرد.
Master Theses
-
سنتز نانوذرات بورات آلومینیوم و بورات نیکل به روش الکتروریسی و بررسی رفتار مغناطیسی و فتوکاتالیستی
2025امروزه بهرهگیری از مواد نانوساختار با خواص ترکیبی برای استفاده در کاربردهای نوین از اهمیت ویژهای برخوردار است. نانوساختارهای بورات آلومینیوم و بورات نیکل به دلیل داشتن گروههای فضایی قطبی BO3 درساختار خود، گزینه مناسبی برای کاربردهای مغناطیسی و فتوکاتالیست است. در این پژوهش نانوذرات انفرادی بورات آلومینیوم (AlB)، بورات نیکل (NiB) و ساختار بورات آلومینیوم نیکل (ANB) با مقادیر مختلف بور به روش الکتروریسی و پسا کلسیناسیون تحت اتمسفر هوا سنتز شدند. بررسی ریزساختار از کلیه نمونهها به کمک میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) نشان داد که الیاف با متوسط قطر 1628-422 نانومتر به نانوذرات با متوسط اندازه 80-100 نانومتر پس از فرایند کلسیناسیون در دمای ℃1000 تبدیل شدند. نتایج آزمون پراش پرتو ایکس (XRD) که پس از مرحله کلسیناسیون بر روی محصولات انجام شد، نشان داد که نمونه AlBحاوی فاز غالب Al18B4O33و اندکی Al2O3 بود، در حالیکه نمونه NiB حاوی Ni3B2O6 و NiO بود. با تغییر مقدار اسیدبوریک در محلول الکتروریسی در سه سطح کم، متوسط و زیاد (0154/0، 0309/0 و0463/0 گرم) مشاهده شد که فازهای Ni2(AlBO5) وNi2Al(BO3)O2 تشکیل شدهاند که با توجه به مقدار بور ترکیب آنها متفاوت بود. همچنین در تصاویر ریزساختار مشاهده شد که با افزایش بور، نانوسوزنهایی نیز به ساختار اضافه شد که به فازهای بورات آلومینیوم و نیکل تعلق داشتند. رفتار مغناطیسی نانوساختارها به کمک آزمون مغناطیسسنج نمونهی ارتعاشی ((VSM بررسی شد. نتایج هیسترزیس مغناطیس رفتار فرومغناطیس نانوذرات را تایید کرد. همچنین مشخص شد که نمونه با بیشترین میزان بور (ANB-H) دارای بیشترین مغناطش اشباع (Ms) برابر emu/g 1596/0 است. مقدار پتانسیل زتا نانوساختارها اندازهگیری شد (mV 15- تا mV30-) و مشاهده شد که تمام نمونهها دارای بار منفی در سطح هستند. نانوساختارهای AlB، NiB و ANB در دو فاز مجزا (رفتار فتوکاتالیستی و توانایی درمان هایپرترمیا) مورد بررسی قرار گرفتند. بررسی سینتیک رفتار فتوکاتالیستی نانوساختارها در تخریب رودامین B نشان داد نمونه ANB-H بیشترین بهرهوری را دارد. مقدار زمان آرامش (𝝉) در این نمونه برابر) (h-1 24/0 محاسبه شد که نشان دهنده بیشترین تخریب است. برای بررسی توانایی نانوساختارها در درمان هایپرترمیا، داربستهای الیافی از پلی وینیلیدن فلوراید (PVDF) حاوی نانوساختارهای AlB، NiB و ANB به روش الکتروریسی سنتز شدند. به کمک آزمون طیف سنجی مادون قرمز تبدیل فوریه (FTIR)، مقدار فاز β زمینه PVDF محاسبه شد. بیشترین بلورینگی فاز β برای داربست حاوی ANB-Hبرابر با 3/88 درصد محاسبه شد. همچنین کمترین مقدار مقاومت سطحی (kΩ.sq-1 77/9) و ثابت دیالکتریک (12140) برای داربست حاوی ANB-H محاسبه شد. توانایی نانوساختارها در درمان هایپرترمیا به کمک میدان مغناطیس متناوب (AMF) بررسی شد که داربست حاوی ANB-Hبیشترین نرخ جذب ویژه (SAR) (W.g-1 26/1) و ضریب تلفات ذاتی (ILP) ( nHm2.Kg-12685/0) را داشت. نتایج این پژوهش نشان داد با تنظیم مقدار بور در نانوساختارهای بورات آلومینیوم و نیکل میتوان عملیات موفق در حذف آلاینده آلی به روش فتوکاتالیست و درمان سرطان به روش هایپرترمیا داشت.
-
بررسی متغیرهای موثر بر فرایند آلومینیومدهی فلزات به روش رسوبدهی شیمیایی بخار (CVD)
2024هدف اصلی این پژوهش، بهبود مقاومت در برابر خوردگی داغ و اکسیداسیون در دماهای بالا برای سوپرآلیاژ Inconel 738 LC از طریق فرایند آلومینیومدهی است. استفاده از پوششهای مقاوم برای محافظت از فلزات در برابر شرایط دمایی سخت، یکی از نیازهای اساسی در صنایع هوافضا و توربینهای گازی محسوب میشود. عملکرد این پوششها به ایجاد لایهی اکسیدی پایدار Al2O3 بر سطح فلز بستگی دارد که به عنوان یک سپر محافظ در برابر خوردگی عمل میکند. با وجود پژوهشهای متعددی که در زمینه بهینهسازی فرایند آلومینیومدهی انجام شده است، تأثیر دما با ترکیب پودری ثابت در روش خارج از سمانتاسیون کمتر مورد بررسی قرار گرفته است. در این پژوهش، پوشش حاوی آلومینیوم با استفاده از روش خارج از پک سمانتاسیون بر سوپرآلیاژ پایه نیکل اعمال شد. پودر مورد استفاده شامل ترکیبی از آلومینیوم، فعالکنندهی NH₄Cl، و پرکنندهی بیاثر آلومینا بود که به ترتیب با نسبتهای وزنی ۱۸، ۳ و ۷۹ درصد مخلوط شدند. فرایند پوششدهی در سه دمای ۹۵۰، ۱۰۰۰ و ۱۰۵۰ درجه سلسیوس در یک کوره تیوبی با جریان گاز آرگون بهمنظور ایجاد محیط خنثی انجام شد. نتایج نشان داد که با افزایش دما از ۹۵۰ به ۱۰۵۰ درجه سلسیوس، عمق لایه نفوذی از ۳۲ میکرومتر به ۵۲ میکرومتر افزایش یافته است. علاوه بر این، شدت پیک فاز β-NiAl، که به عنوان فازی مطلوب برای بهبود مقاومت در برابر خوردگی و اکسیداسیون شناخته میشود، با افزایش دما از ۸۰٪ به ۱۰۰٪ ارتقا یافت. پس از اعمال پوشش، عملکرد نمونهها از طریق آزمونهای خوردگی داغ و اکسیداسیون در دماهای بالا ارزیابی شد. آزمون خوردگی داغ به مدت ۳۰ ساعت در دمای ۹۰۰ درجه سلسیوس با استفاده از نمکهای خورنده Na₂SO₄، NaCl و V₂O₅ انجام شد. علاوه بر این، آزمون اکسیداسیون در دمای بالا به مدت ۸۰ ساعت در دمای ۹۵۰ درجه سلسیوس و در اتمسفر هوا صورت گرفت. برای ارزیابی ریزساختار پوششها از میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) مجهز به طیفنگار تفکیک انرژی (EDS) استفاده شد. ترکیبات فازی نیز با کمک پراشسنجی پرتو ایکس (XRD) شناسایی شدند. نتایج آزمون خوردگی داغ نشان داد که نمونه بدون پوشش بهشدت تخریب شد و بیشترین تغییر وزن (5/26 میلیگرم بر سانتیمتر مربع) را داشت، در حالی که نمونههای آلومینیومدهیشده کمتر تخریب شدند. در میان نمونههای آلومینیومدهیشده، نمونهای که در دمای ۱۰۵۰ درجه سلسیوس آلومینیومدهی شده بود، کمترین میزان تخریب و تغییر وزن (3/7 میلیگرم بر سانتیمتر مربع) را به خود اختصاص داد. علاوه بر این، نتایج آزمون اکسیداسیون در دماهای بالا نشان داد که لایهای پایدار از اکسید بر سطح نمونههای آلومینیومدهیشده تشکیل شده است. بهبود رفتار این نمونهها ناشی از وجود درصد بالاتر فاز NiAl در دمای ۱۰۵۰ درجه سلسیوس است.
-
بررسی اتصال بین قطعات آلومینا با استفاده از نانوسوزنهای بورات آلومینیوم سنتز شده به روش الکتروریسی
2024اتصال قطعات سرامیکی هم جنس و ناهمجنس به یکدیگر مشکل جدی از دیرباز بوده است. تاکنون راه حلهای متفاوتی پیشنهاد شده است، اما تاکنون استفاده از مواد نانوساختار کمتر مورد بررسی قرار گرفته است. در این پژوهش، قابلیت اتصال قطعات پایه آلومینا به کمک نانوسوزنهای بورات آلومینیوم حین فرایند کلسیناسیون داربست الکتروریسی مورد بررسی قرار گرفت. برای یافتن اثر ترکیب و ریختشناسی نانوسوزن بورات آلومینیوم بر میزان اتصال بین دو قطعه، مقدار بور در محلول الکتروریسی و محصول آن، در سه سطح کم، متوسط و زیاد میلیمول بررسی شد. بررسی تصاویر میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) از نانوالیاف الکتروریسی، آرایش تصادفی از الیاف صاف و بدون نقص را نشان داد. به منظور یافتن دمای مناسب برای کلسیناسیون و دمای لازم برای اتصال دو قطعه، رفتار حرارتی الیاف با محتوی بور زیاد از دمای محیط تا دمای1000 درجه سانتیگراد توسط آزمون وزنسنجی حرارتی TGA) و گرما سنجی روبشی تفاضلی (DSC) مورد ارزیابی قرار گرفت. نتایج حاکی از وجود چندین پیک گرمازا بود که مربوط به اکسیداسیون و حذف پلیمر و تشکیل فازهای جدید بود و دمای 1000 درجه سانتیگراد را به عنوان دمای مناسب برای کلسیناسیون و تشکیل فاز سرامیکی پیشنهاد داد. ریزساختار شناسی داربست الکتروریسی با محتوی بور کم، نانوسوزنهایی با قطر کمتر از 50 نانومتر و طول بیشتر از ۱ میکرومتر را پس از کلسیناسیون نشان داد. همچنین نتایج نشان داد که با افزایش محتوی بور، نسبت طول به قطر نانوسوزنها افزایش یافت. به منظور بررسی و شناسایی فازهای سنتز شده در نانوسوزنها از آزمون پراش پرتو ایکس(XRD) استفاده شد. نتایج نشان داد که هر سه ترکیب نانوسوزن از دو فازاصلی B2O3 و Al18B4O33 تشکیل شده اند و فاز دیگری وجود ندارد. مشخص شد که با افزایش محتوی بور، نسبت فاز B2O3 به Al18B4O33 افزایش یافت. مقدار بور اضافی با اتمهای آلومینیوم واکنش نداده و فاز زود ذوب B2O3را ایجاد میکند که در فرایند اتصال قطعات پایه آلومینا نقش مهمی ایفا میکنند. در این تحقیق از نانوکامپوزیت آلومینا-زیرکونیا (۱۵ درصد مولی زیرکونیا) به عنوان قطعات پایه آلومینا برای اتصال استفاده شد. فرایند اتصالدهی با قراردادن 065/0 گرم از داربست الکتروریسی بین دو دیسک سرامیکی بدون و با اعمال فشار 13 کیلوپاسکال در دمای 1000 درجه سانتیگراد به مدت ۱ ساعت انجام شد. به منظور بررسی میزان اتصال، قطعات متصل شده تحت آزمون برش با استاندارد ASTM-D905 قرار گرفتند و نمودار نیرو-جابهجایی مورد ارزیابی قرار گرفت. نتایج نشان داد که اعمال فشار حین فرایند اتصال موجب بهبود اتصال تا ۵ برابر میشود. همچنین مشخص شد که با افزایش محتوی بور در عامل اتصال از کم به زیاد، نیروی لازم برای شکستن اتصال از 77 نیوتن به 892 نیوتن افزایش یافت. نتایج ریزساختار شناسی از سطح مقطع شکست نشان داد که نانوسوزنهای Al18B4O33به عنوان تقویت کننده در میان فاز سرامیکی B2O3 که نقش عامل اتصال را بازی میکند، توزیع شده است. نتایج این پژوهش تأیید کرد که با انتخاب مناسب ترکیب میتوان با روش الکتروریسی-کلسیناسیون اتصال قطعات سرامیکی را ممکن ساخت.
-
سنتز و بررسی کارایی حفاظت الکترومغناطیس ورق های هیبریدی پلی آمید 6/ نانوذرات زیرکونیا تولید شده به روش الکتروریسی
2023یکی از چالش های مهمی که سامانه های الکتریکی و الکترونیکی با آن مواجه هستند، تداخل امواج الکترومغناطیسی (EMI) ناشی از عواملی همچون دستگاه های بی سیم، سیستم های برق فشار قوی و امواج ساطع شده از دستگاه های ارتباطی است که عملکرد آن ها را با اختلال مواجه می سازد. یکی از روش های غلبه بر این چالش، استفاده از نانوکامپوزیت های هیبریدی پلیمری حاوی نانوذرات سرامیک است که می توانند امواج الکترومغناطیسی را جذب و جداسازی نمایند. در این راستا، در پژوهش پیش-رو، ورق های کامپوزیتی نانوساختار بر پایه پلی آمید 6 (PA6) حاوی نانوذرات زیرکونیا (ZrO2) و اکسید روی (ZnO) به روش الکتروریسی تولید و خواص میکروساختاری، الکتریکی و حفاظت الکترومغناطیس آن مورد بررسی قرار گرفت. بدین منظور، ریزساختار و توزیع اندازه قطر نانو الیاف تولیدی توسط میکروسکوپ الکترونی روبشی گسیل میدانی (FE-SEM) و همچنین ترکیب شیمیایی و ساختار بلوری این نانوالیاف توسط طیف سنجی پراش انرژی (EDS)، نقشه آنالیز عنصری، آزمون پراش پرتو ایکس (XRD) و طیف سنجی رامان مورد بررسی قرار گرفتند. همچنین از دستگاه سلف سنج، خازن سنج و مقاومت سنج (LCR) جهت اندازه گیری ضریب دی الکتریک و از دستگاه تحلیلگر شبکه برداری (VNA) جهت ارزیابی اثربخشی محافظت الکترومغناطیسی (طبق استاندارد ASTM D4935) استفاده شد. حضور عناصر روی و زیرکونیوم در نانوکامپوزیت های حاوی اکسیدهای فلزی این دو عنصر توسط آزمون های رامان، EDS و نقشه آنالیز عنصری اثبات شد. همچنین مطابق نتایج آزمون میکروسکوپی، متوسط اندازه قطر الیاف تولیدی برای نمونه های فاقد افزودنی و حاوی نانوذرات اکسید زیرکونیوم و اکسید روی به ترتیب برابر با 032/0 ± 205/0، 068/0 ± 201/0 و 017/0 ± 149/0 میکرومتر بود. نتایج نشان پخش شوندگی مناسب نانوذرات زیرکونیا در بستر پلیمر و پخش شوندگی به طور کلوخه ای برای اکسید روی را تائید کرد. همچنین توزیع اندازه قطر الیاف وسیع در نمونه حاوی این نانوذرات مشاهده شد. نتایج آزمون XRD نیز بیانگر حضور ساختارهای بلوری هگزاگونال ZnO و مونوکلینیک ZrO2 در بستر نانوکامپوزیت های حاوی این نانوذرات به ترتیب با اندازه بلورک های برابر با 5/28 و 7/24 نانومتر بود. مقدار میانگین ضریب دی الکتریک در بازه 1/0 تا 2 کیلو هرتز برای نمونه ی PA6 و نانوکامپوزیت های حاوی نانوذرات ZrO2 و ZnO به ترتیب برابر ب
-
بررسی رفتار سایشی پوشش بورایدی روی کاشتنی تیتانیوم در محیط شبیه ساز بدن
2022یکی از کاربردهای گسترده تیتانیوم و آلیاژهای آن در مصارف پزشکی، استفاده به عنوان کاشتنی است. تیتانیوم و آلیاژهای آن برای کاربردهای زیست پزشکی ویژگی های مقبول ذاتی فراوانی دارند. با این وجود از لحاظ رفتارهای سطحی و تریبولوژی دچار ضعف هستند. در این پژوهش با ایجاد پوشش محافظ بورایدی روی تیتانیوم خالص تجاری، به بررسی رفتار سایشی این پوشش در محلولی با غلظت یونی نسبتاً مشابه با پلاسما خون که تحت شرایط دمایی و pH فیزیولوژیکی بدن است (SBF)، پرداخته شد. بدین منظور، فرآیند بوردهی به روش پک سمانتاسیون در دو دمای مختلف (950 و 1050 درجه سلسیوس) و مدت زمان ثابت (1 ساعت) انجام شد. به منظور شناسایی فازهای تشکیل شده از آزمون پراش پرتو ایکس (XRD) و جهت بررسی ریزساختار، مورفولوژی و ضخامت لایه های بوراید از تصاویر میکروسکوپ الکترونی روبشی (SEM) بر روی نمونه های پوشش دهی شده استفاده شد. نتایج حاصل از XRD و SEM به خوبی نشان دهنده ی ایجاد لایه بورایدی از ویسکرهایTiB و لایه متراکم از فاز TiB2 بر روی سطح تیتانیوم خالص تجاری در دمای 950 و 1050 درجه سلسیوس بود. آزمون های زبری سنجی، سختی سنجی و ترشوندگی جهت ارزیابی خواص سطح نمونه ها به عمل آمد. همچنین به منظور بررسی اثر نوع پوشش بورایدی بر رفتار تریبولوژی آن، ابتدا به طراحی آزمایش به کمک مدل سازی سطح پاسخ به روش باکس-بنکن، توسط نرم افزار Design-Expert پرداخته شد. سپس آزمون سایش پین بر روی دیسک در شرایط مختلف در دو محیط خشک (هوا) و تر (SBF) انجام شد. همچنین ساختار میکروسکوپی و آنالیز فازی از سطح سایش و ذرات سایش هر یک از نمونه های پوشش دهی شده بررسی شد و سپس نتایج با نمونه تیتانیوم خالص مقایسه شد. بررسی نتایج نشان داد که با ایجاد پوشش بورایدی روی تیتانیوم خالص نه تنها منجر به سخت شدن سطح می شود بلکه سبب افزایش مقاومت به سایش و کاهش اصطکاک در شرایط تحت بار می شود. همچین میزان رهایش فلزات به محلول شبیه سازی شده بدن توسط آنالیز طیف سنجی جرمی پلاسمای جفت شده القایی (ICP) بررسی شد و نتایج نشان داد که میزان رهایش فلز تیتانیوم بسیار اندک بود. با توجه به نتایج این پژوهش، تیتانیوم با پوشش بورایدی باعث بهبود چشم گیر رفتار تریبولوژی سطح آن در محیط شبیه ساز بدن می شود که کاربرد بیولوژیکی آن را توسعه می دهد.
-
بررسی اثر آلائیدن آلومینیوم و مس بر رفتار فتوکاتالیستی نانو میله های ZnO ایجاد شده به روش رسوب گذاری حمام شیمیایی
2021در این پژوهش، نانومیله های اکسید روی (ZnO) و نانومیله های اکسید روی آلائیده شده به مس (CZO) و اکسید روی آلائیده شده به آلومینیوم (AZO) بر روی زیر لایه (شیشه) با استفاده از یک روش دو مرحله ای سنتز شدند. ابتدا محلول پلیمری PVP و استات روی تهیه و روی بستر (شیشه) با استفاده از روش الکتروریسی ریسیده شد. سپس با استفاده از روش رسوب گذاری حمام شیمیایی CBD نانو میله های ZnO، AZO، CZO روی زیر لایه رشد داده شدند. تصاویر میکروسکوپ الکترونی SEM از لایه دانه گذاری قبل و بعد از عملیات حرارتی نشان داد که با عملیات حرارتی شکل ذرات حالت کروی پیدا می کنند و قطر الیاف از 146 نانومتر به 21 نانومتر کاهش پیدا می کند. نتایج FESEM کاهش قطر دانه را با افزودن Cu و Al را نشان داد و ساختار شش ضلعی بودن نانومیله های ZnO و AZO و CZO را مشخص کرد. قطر نانو الیاف ZnO 193 نانومتر و AZO 249 نانومتر و CZO 386 نانو مترمحاسبه شد. آزمون پراش اشعه ایکس XRD مشخص شد که نانو میله با ساختار هگزاگونال ورتزیت رشد کرده اند و با افزودن مس وآلومینیوم اندازه دانه کاهش و نواقص نقطه ای در ساختار اکسید روی ظاهر می شود که این نواقص باعث افزایش رشد ترجیحی نانومیله ها می شوند. نتایج حاکی از EDS حضور آلومینیوم و مس را در ساختار ZnOنشان داد. درآزمون آب دوستی و آب گریزی، نانومیله های ZnO، رفتار آب گریزی بیشتری را نسبت به دو نمونه دیگر از خود نشان داد. برای بررسی خواص نوری از آزمون PL و UV-VIS استفاده شد. که در آزمون فتولومینسانس PL انجام شده نشان داد که بیش ترین میزان انتشار درمنطقه فرابنفش بیانگر نزدیک ترین لبه باند (NBE) است که با افزودن مس و آلومینیوم شدت NBE کاهش پیدا می کند که این انتشارات بازترکیبی جفت الکترون-حفره بین باند ظرفیت و هدایت می باشد که به عنوان همان شکاف باند فرض می شود که با اضافه شدن مس وآلومینیوم مقدار شکاف نواری کاهش پیدا می کند. نمونه ZnO رفتار فتوکاتالیستی بهتری را از دو نمونه دیگر از خود نشان داد که به دلیل تولید جفت الکترون و حفره بیشتر بود.
-
افزودن نانوذرات هیدروکسی آپاتیت به داربست های نانوساختار پلی کاپرولاکتان و بررسی رفتار رهایش پروتئین
2021استفاده از روش الکتروریسی در زمینه ی ساخت داربست های مورد استفاده در بحث مهندسی بافت استخوان به دلیل ساختار متخلخل و الیاف گونه بسیار مورد توجه قرار گرفته است. در این پژوهش از پلیمر پلی کاپرولاکتان (PCL) به عنوان یک زمینه و یک پلیمر زیست تخریب پذیر با خواص کششی و مکانیکی مطلوب استفاده شد. همچنین رهایش و حضور پروتئین آلبومین سرم گاوی (BSA) که به روش مخلوط الکتروریسی در زمینه های PCL توزیع شده است، مورد بررسی قرار گرفت. حضور ذرات هیدروکسی آپاتیت (HA) برای کمک به استخوان سازی بهتر، رهایش و زیست سازگاری بهتر داربست ها مطابق پروتئین، در داخل زمینه ی PCL قرار داده شد. ریز ساختار آن ها، گروه های مولکولی، قابلیت تر شوندگی، تورم و خواص مکانیکی آن ها مشخص شد. نتایج آزمایش های مشخصه یابی SEM و FTIR نشان داد که HA و پروتئین BSA می توانند در الیاف PCL بدون تأثیر قابل توجهی بر گروه های مولکولی اصلی ساختار PCL گنجانده شوند. ترکیب هر دو جزء HA و پروتئین BSA آب گریزی داربست PCL را حدود °13 برای بازسازی استخوان کاهش داده است. همچنین در بررسی میزان تورم و تخریب داربست ها، به مدت 100 روز در محلول PBS، نشان داد که تورم داربست های حاوی اجزاء فوق، روند افزایشی دارد. در حالی که پس از حدود 40 روز داربست PCL شروع به تخریب کرد و تورم آن کاهش یافت. خواص مکانیکی داربست ها در شرایط خشک و مرطوب (به کمک محلول PBS) مورد بررسی قرار گرفت. سینتیک انتشار BSA از داربست های ترکیبی مورد بررسی قرار گرفت. مدل سینتیکی هیگوچی مناسب ترین مدل برای توضیح انتشار پروتئین بود. آزمایش غوطه وری در محلول شبیه سازی مایع بدن (SBF) به طور جامع برای ارزیابی تشکیل آپاتیت بر روی داربستها انجام شد. تغییرات نسبت اتمی Ca/P در دوره ی غوطه وری طی 7 روز بررسی شد. نتایج نشان داد که به دلیل اثر هم افزایی HA و پروتئین BSA، استخوان سازی بهتر روی داربست ترکیبی PCL-HA-BSA انجام شد. سازگاری با داربست ها توسط سلول های رده ی استئوسارکوم MG-63 مورد بررسی قرار گرفت و توانایی قابل توجه داربست ترکیبی PCL-HA-BSA را برای بازسازی استخوان نشان داد. با استفاده از نرم افزار شبیه سازی دینامیک مولکولی GROMACS فعل و انفعالات بین پروتئین BSA و HA در زمان ns170 مورد بررسی قرار گرفت؛ که نتایج نشان دارد که مولکول پروتئین از سمت محلهای آب دوست خود به کمک
-
بررسی اتصال ورق های مس در فرآیند نورد تجمعی پیوندی تقویت شده با نانوذرات بوراید تیتانیوم و آلومینیوم
2021مواد نانو ساختار عمدتاً به آن دسته از مواد اطلاق می شود که حداقل یکی از ابعاد آن در مقیاس نانو متری و کمتر از 100 نانومتر باشد. هدف از این پژوهش، سنتز پودر نانو کامپوزیت نانو ساختار بوراید تیتانیوم و آلومینیوم به روش الکتروریسی و بررسی مورفولوژی نانوساختارهای اکسید، بورید و بورات می باشد. در این راستا، پیش ساز بوراید تیتانیوم و آلومینیوم با اثر محتوای بور با نسبت های مختلف مولار (08 /0، 16 /0 و 24 /0) برای B/(Ti + Al) با استفاده از نانو ذرات دی اکسید تیتانیوم، نمک آلومینیوم نیترات آب پوشیده، اسید بوریک و پلی وینیل پیرولیدون به عنوان زمینه پلیمری تهیه و نانو الیاف به دست آمده با استفاده از روش الکتروررسی سنتز شد. تصویربرداری با میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) نشان داد که پس از یک ساعت عملیات حرارتی در دمای 1100 درجه سانتی گراد، نانو الیاف ترکیبی در بستر فیبری به نانوذرات و نانو ویسکر ها تبدیل شد. انرژی های اتصال با طیف سنجی اشعه ایکس فوتوالکترون (XPS)، و مطالعه فاز از طریق روش پراش اشعه ایکس (XRD) انجام شد. نتایج، تشکیل پودر سرامیکی نانوساختار متشکل از اجزای متعدد، یعنی اکسیدها (به عنوان مثال، TiO_2 با دوپ B، Al_2 O_3)، بوریدها (TiB، TiB_2، Ti_2 B_5، TiB_12 و AlB_2) و بورات ها (TiBO_3 ؛ Al_18 B_4 O_33) را تأیید کرد. تجزیه و تحلیل حرارتی همزمان (STA) از پودر نانو ساختار مذکور نشان داد که بوریدها و بورات ها به طور متوالی در دمای بالای 800 درجه سانتی گراد از طریق واکنش های مربوط به B_2 O_3 مذاب تشکیل می شوند. پودر نانو ساختار با محتوای 08 /0 و24 /0 اسید بوریک بدست آمده ازسنتز الکتروریسی در فرآیند پوشش دهی به منظور اختلاف نقطه ذوب مس ونانوذرات انجام شد. پوشش بدست آمده روی ورق مس قبل ازفرآیند نورد تجمعی پیوندی ایجاد می شود. فرآیند نورد تجمعی پیوندی را برای سه ورق مس بدون پوشش، و ورق مس پوشش داده شده با پودر نانو ساختار با کسر مولی برابر با 08/0 برای B/(Ti + Al) و ورق مس پوشش داده شده با پودر نانو ساختار با کسر مولی برابر با 24/0 برای B/(Ti + Al) برابر انجام شد. ریزساختار ورق مس، فرآیند نورد تجمعی پیوندی با استفاده از میکروسکوپ الکترونی روبشی مجهز به طیف سنجی تفکیک انرژی بررسی شد. سختی نمونه ها بعد از سه پاس فرآیند نورد تجمعی پیوندی از طریق آزمون میکروسختی اند
-
توسعه پوشش های سرمت Cr3C2-NiCr و WC-Co-Cr بر زیرلایه آلیاژ آلومینیوم A356 با استفاده از روش HVOF
2021در این پژوهش، پوشش های سرمت Cr3C2-NiCr و WC-Co-Cr بر زیرلایه آلیاژ آلومینیم A356 با استفاده از روش سوخت اکسیژن با سرعت بالا (HVOF) اعمال گردید. میکروسکوپ نوری (OM) و میکروسکوپ الکترونی روبشی نشر میدانی (FESEM) مجهز به طیف سنجی تفکیک انرژی (EDS)، آزمون ریزسختی، سایش لغزان و خوردگی به منظور مشخصه یابی زیرلایه A356 و پوشش های مذکور مورد استفاده قرار گرفتند. مشاهدات ریزساختاری، نشان داد که میانگین ضخامت پوشش ها حدودا 250 میکرومتر است و با زیرلایه چسبندگی مناسبی داشتند. سختی پوشش های Cr3C2-NiCr (930 HV) و WC-Co-Cr (1300 HV) به ترتیب نزدیک به 11 و 15 مرتبه بیشتر از سختی زیرلایه (80 HV) بود. پوشش Cr3C2-NiCr و WC-Co-Crدر مقایسه با زیرلایه A356، اتلاف جرم ناشی از سایش، نرخ سایش و ضریب اصطکاک کمتری را نشان می داد. اتلاف جرم ناشی از سایش و ضریب اصطکاک پوشش تحت بار 10 N، حدود 24/0 و 5/0 میلی گرم (نزدیک به 99% و 63% کمتر از زیرلایه؛ 61/0 و 5/41 میلی گرم) می باشد. افزایش بار اعمالی، مشخصات سایشی زیرلایه A356 را با درجه مشخص تری افزایش می دهد. مشاهدات میکروسکوپ الکترونی روبشی (SEM)، حاکی از وقوع سازوکار های سایشی متفاوتی روی نمونه های تحت آزمون سایش بود. پوشش WC-Co-Cr حدود 9 برابر و پوشش Cr3C2-NiCr حدود 3 برابر مقاومت به خوردگی بهتری از زیرلایه آلیاژ آلومینیوم A356 نشان دادند. سازوکار غالب خوردگی در پوشش ها خوردگی یکنواخت بود.
-
سنتز و بررسی اثر افزودنی نانو ذرات اکسید روی بر رفتار آنتی باکتریال داربست کامپوزیتی PCL// گزنه
2020با توجه به گسترش زخم های مزمن خصوصا زخم های دیابتی و نیاز به توسعه روش های درمانی نوین برای این زخم ها، نانوالیاف های الکتروریسی شده می توانند به عنوان درمان اینگونه زخم ها گزینه ای امید بخش است. با توجه به خواص نانوالیاف الکتروریسی شده از جمله سطح ویژه بالا، تخلخل کافی، شباهت داشتن باماتریس خارج سلولی و توانایی بارگذاری عوامل دارویی بر روی آن ها برای پوشش زخم های مزمن خصوصا زخم پای دیابتی کاربردی است. در این مطالعه از نانوذرات اکسید روی که خواص آن در علم پزشکی اثبات شده است به عنوان عامل ضد باکتری استفاده شده است. همچنین از گزنه به عنوان گیاه بومی ایران به خاطر فعالیت ضد اکسنده، ضد قارچی، ضد ویروسی، ضد فساد آمیزی، ضد زخم، افزایش آبدوستی وخاصیت ضدباکتریالی غشاء استفاده شد. سنتز نانوذرات به روش سل-ژل انجام شد و مشخصه یابی نانوذرات اکسید روی با استفاده از الگوی پراش اشعه ایکس( XRD)، طیف سنجی انرژی ایکس پراکنده شده (EDS) و تصویر برداری با میکروسکوپ الکترونی روبشی گسیل میدانی ( FESEM) انجام شد و نتایج نشان داد که نانوذرات با قطر کمتر از صد نانومتر و با مورفولوژی کروی با توزیع یکنواخت تشکیل شد و خلوص بالایی داشت. بهینه کردن مقدار گزنه نیز با افزودن آن به پلیمر پلی کاپرولاکتان انجام شد و سپس قابلیت ریسیده شدن، قطر الیاف و توزیع آن ها بررسی شد و 4 درصد وزنی گزنه به عنوان مقدار بهینه تعیین شد. نانوذرات سنتز شده به داربست کامپوزیتی گزنه و پلی کاپرولاکتان اضافه شد و انالیزهای میکروسکوپ الکترونی روبشی، طیف سنج اشعه ایکس، تست کشش مکانیکی، طیف سنج مادون قرمز، تست آنتی باکتریال، سمیت سلولی، چسبندگی سلولی، تر شوندگی و طیف سنج اشعه فرابنفش برای مشخصه یابی غشاء ها استفاده شد. مشاهده شد که با افزودن نانوذرات خواص مکانیکی افت کرده است. با افزودن گزنه به غشاء آبدوستی آن ها افزایش پیدا کرد. گزنه باعث هم افزایی خاصیت آنتی باکتریال شد و افزایش بیشتر نانو ذرات منجر به افزایش خاصیت انتی باکتریال نشد. تمامی غشاء ها در طی 24 ساعت تقریبا صد رد صد زیست سازگار بودند و سمیتی از خود نشان ندادند. به طور کلی نمونه حاوی 4 درصد وزنی گزنه و یک درصد وزنی نانوذرات اکسید روی به عنوان نمونه بهینه برای پوشش زخم ارائه گردید.
-
بررسی اثر دانه گذاری ZnO به روش الکتروریسی بر رفتار الکترواپتیکی لایه نازک ZnO ایجاد شده به روش رسوب گذاری حمام شیمیایی
2020در این پایان نامه، سنتز نانومیله های اکسید روی بر زیرلایه FTO، با استفاده از یک روش دو مرحله ای شامل ایجاد لایه دانه گذاری و رشد بلور انجام شد. برای ایجاد لایه های دانه گذاری، ابتدا محلول پلیمری PVP و استات روی تهیه و سپس با کنترل پارامتر های الکتروریسی و عملیات حرارتی در دمای 400 درجه سانتی گراد، لایه نازک های اکسید روی خالص (ZnO) آلاییده به آلومینیوم (AZO) و مس (CZO) سنتز شدند. نتایج FESEM لایه های دانه گذاری ZnO، AZO و CZO نشان دادند که فرایند کلسینه شدن نانوالیاف نانومتر تبدیل به پوشش متشکل از نانوذرات پیوسته دارای ظاهری شفاف و یکنواخت با چسبندگی خوب می شوند. نتایج طیف سنجی رامان و EDS نشان دادند که لایه های دانه گذاری ZnO، AZO و CZO با ساختار ورتزیت تشکیل شده است. همچنین نتایج بررسی آب دوستی و آب گریزی از لایه های دانه گذاری نشان داد که لایه دانه گذاری ZnO با زاویه تماس 90 درجه قطره آب مقطر با سطح لایه دانه گذاری ZnO، دارای سطحی آب گریز و زبری بیشتری نسبت به لایه های دانه-گذاری AZO و CZO است. در مرحله دوم نانومیله های اکسید روی به روش رسوب حمام شیمیایی (CBD) روی لایه دانه گذاری ZnO در دمای 90 درجه سانتی گراد در زمان های (15، 30، 60 و 90دقیقه) سنتز شد. بهینه ترین زمان برای رشد نانومیله های اکسید روی 60 دقیقه بود. که قطر نانومیله ها 87 نانومتر، طول نانومیله ها 154 نانومتر محاسبه شد. پس از بهینه سازی فرایند، نانومیله های اکسید روی بر لایه های دانه گذاری AZO و CZO با شرایط یکسان رشد داده شدند. با مقایسه نانومیله های اکسید روی رشد یافته بر سه لایه دانه گذاری از تصاویر FESEM مشخص است، که نانومیله اکسید روی رشد یافته بر لایه دانه گذاری ZnO از نظر تراکم میله ها بسیار بیشتر است. نتایج GIXRD نشان داد نانومیله های اکسید روی در جهت محور (C) رشد طولی داشتند. نتایج بررسی رفتار الکترواپتیک در محدوده UV-Vis نشان داد عبور نور در محدوده مرئی نانومیله ها کمتر از 40% بود. بررسی طیف سنجی فتولومینسانس (PL ) نشان داد در نانومیله های اکسید روی رشد یافته بر لایه دانه گذاری AZO پیک اضافی مربوط به انتشار نور بنفش در نمونه ظاهر شد. در نتایج AFM رشد نانومیله های اکسید روی تایید و متوسط زبری سطح nm 36/35 برای نانومیله رشد یافته بر لایه دانه گذاری ZnO بود. از بررسی خواص فتوالکتروشیمیایی مشخص
-
ساخت و بررسی رفتار فتوالکتروشیمیایی لایه نازک ZnO آلاییده شده با Al تولید شده به روش الکتروریسی
2020-
-
ایجاد پوشش نانو ساختار سد حرارتی بر پایه زیرکونیا بر روی سوپر آلیاژ پایه نیکل به روش اکسیداسیون الکترولیتی پلاسمایی
2019-
-
صلاح لیزری سطح تیتانیوم خالص تجاری/ نانو الیاف هیدروکسی آپاتیت پوشش دهی شده با فرآیند الکتروریسی و بررسی رفتار زیست سازگاری
2019در این پژوهش، به بررسی خواص زیست سازگاری ماسک نانو الیاف هیدروکسی آپاتیت (HA) تشکیل شده با استفاده از روش الکتروریسی و عملیات سطحی با لیزر روی تیتانیم خالص تجاری پرداخته شده است. به منظور ایجاد سطح زیست فعال، ابتدا نانوذرات هیدروکسی آپاتیت به روش رسوب محلول شیمیایی، سنتز شدند. سپس با کنترل پارامترهای الکتروریسی، الیاف کامپوزیتی هیدروکسی آپاتیت/پلی وینیل پیریدین (PVP) با نسبت بهینه HA/PVP، (g/g) 0.17روی سطح تیتانیم خالص تجاری به روش الکتروریسی لایه نشانی شد. سپس به منظور حذف پلیمر، تف جوشی ذرات HA به زیرلایه و بلورینه شدن الیاف HA، عملیات سطحی به دو روش انجام گرفت. این دو روش عبارتند از کلسیناسیون توسط کوره در مدت زمان 5 دقیقه و دماهای 500، 600، 700 و 800 درجه سانتی گراد و دیگری فرایند اصلاح سطح لیزری در دانسیته توان و سرعت های مختلف روبش. نتایج آزمون XRD نشان می دهند که عملیات سطحی در کوره به علت عدم وجود گاز محافظ و شرایط اتمسفری هوا، پوشش ها فرصت تغییرات و تبدیل شدن به ترکیبات کلسیم فسفاتی را نداشته و در مقایسه با لیزر شرایط خوبی را نمی توان مشاهده کرد برعکس در شرایط لیزرکاری با وجود گاز آرگون در دماهای بالا تغییرات فازی کلسیم فسفاتی به خوبی مشاهده می شود. نتایج آزمون SEM نشان داد که پس از عملیات لیزرکاری، در کمترین فاصله پرتو لیزر از سطح و کمترین سرعت (به ترتیب برابر با mm 23 و mm/s 5)، مورفولوژی الگودار و بهترین ساختار سطحی ایجاد شد. باتوجه به هدف این پژوهش، اثر اصلاح سطح بر توانایی استخوان سازی سطوح اصلاح شده در توان های مختلف لیزر به کمک آزمون In-vitro غوطه وری در محلول شبیه ساز بدن (SBF)، آزمون سمیت سلولی (MTT) و ارزیابی رشد و تکثیر رده سلولی MG63 در زمان های مختلف ماندگاری بررسی شد نتایج تست MTT و مورفولوژی سلول ها بعد از 7 روز در نمونه با مورفولوژی الگودار بهترین پاسخ سلولی را نشان داد.
-
پوشش دهی 2TiB/TiB بر روی تیتانیوم خالص تجاری و بررسی رفتار رویین و الکتروشیمیایی در محلول های رینگر و هنک .
2018در این مطالعه رفتار الکتروشیمیایی تیتانیم خالص تجاری پوشش دهی شده با استفاده از روش پک سمانتاسیون و پودرهای بور،ذغال کربن و آلومینا همراه با آنالیزهای مختلف و نمودار پلاریزاسیون،طیف سنجی امپدانس الکتروشیمیایی EIS و موت-شاکی در محلول رینگر و هنک در دمای C̊37 با موفقیت انجام گرفت. هدف از این تحقیق بررسی رفتار رویین و الکتروشیمیایی لایه بورایدی TiB/TiB2 پوشش دهی شده بر روی تیتانیوم خالص تجاری است. بدین منظور فرایند بوردهی به روش پک سمانتاسیون در دو دمای مختلف (900 و 1000 درجه سانتی گراد) و دو زمان مختلف (3 و 4 ساعت) انجام شد.آنالیزهای XRD و میکروسکوب الکترونی روبشی SEM به خوبی نشان دهنده ایجاد لایه بورایدی از ویسکرهای TiB و TiB2 متراکم بر روی لایه تیتانیوم خالص تجاری در دمای ̊C 900و̊ C 1000 و زمان 3 و 4 ساعت است. همچنین نتایج آزمون In-vitro شبیه ساز استخوان سازی نشان داد که پوشش کامپوزیتی TiB/TiB2 موجب بهبود استخوان سازی تیتانیوم می شود. منحنی های پلاریزاسیون پتانسیو دینامیک نشان دهنده ی رفتار پسیو لایه بورایدی است.آزمون طیف سنجی امپدانس الکتروشیمیایی (EIS) نشان دهنده مقاومت به خوردگی خوب و رضایت بخش نمونه بورایدی در محلول رینگر و هنک است.آنالیز موت-شاکی (M-S) نشان دهنده ی رفتار نیمه هادی نوع-n لایه پسیو ایجاد شده از بوراید بر روی تیتانیوم خالص است،که یک نوع پوشش بایولوژیک و نیمه رسانا است. اگرچه آنالیز موت-شاکی نشان داده است تمرکز لایه پسیو همراه با افزایش زمان کاهش می یابد. سرانجام بنابراین نمونه̊C 900 در زمان 3 ساعت در مقایسه با نمونه ̊C 1000 برای کاربردهای بیولوژیکی مناسب تر است که اساسا برای ساخت شرایط سطحی بهتر و نقص کمتر و لایه پسیو تکامل یافته تر ایجاد می شود.
-
بررسی رفتار جذب سطحی کاتیون های فلزات سنگین توسط نانو الیاف کامپوزیتی نایلون6/ نانو ذرات سرامیکی
2018آلودگی آب توسط یون های فلزات سنگین به یکی از مشکلات جهانی در حوزه محیط زیست تبدیل شده است. با توجه به اهمیت این موضوع، در این پژوهش به بررسی سنتز و بهینه سازی غشا نانو ساختار کامپوزیتی نایلون6/ نانوذرات سرامیکی (زیرکونیا و آلومینا) به روش الکتروریسی و بررسی رفتار جذب سطحی در پساب های رایج صنعتی حاوی کاتیون های فلزی پرداخته شده است. ابتدا غلظت نانو ذرات بهینه شد. نتایج حاصل از بررسی ریز ساختار نشان داد که نمونه با درصد وزنی نایلون به نانو ذرات سرامیکی زیرکونیا وآلومینا 88/0 نتیجه دلخواه داشت. نتایج نشان داد پتانسیل زتا نانو ذرات زیرکونیا و آلومینا در محلول اسیدی به ترتیب mV15+ و mV7- بودند که نانو ذرات زیرکونیا محل های مناسب تری برای جذب یون های مثبت در پساب های اسیدی روی سطح نانو الیاف نایلون6 بودند. ریزساختار نانو غشاهای سنتز شده با استفاده از میکروسکوب الکترونی روبشی گسیل میدانی (FESEM)مورد ارزیابی قرار گرفت. همچنین برای شناسایی بنیان های ملکولی از آزمون طیف سنجی فروسرخ (FTIR) استفاده شد. نتایج حاصل از جذب سطحی نانو غشاهای نایلون6 و نایلون6/ نانو ذرات سرامیکی در پساب های شامل Al و Fe نشان داد بیشترین میزان جذب سطحی 1/6، 4/2 و4/10 میلی-گرم بر سانتی متر مربع پس از یک ساعت غوطه وری به ترتیب برای نمونه های نایلون6، نایلون6/ آلومینا و نایلون6/ زیرکونیا در پساب حاوی آلومینیوم و بیشینه مقدار جذب شده برای کاتیون فلزات Cu، Ni و Co برای نانو غشا نایلون6/ نانو ذرات زیرکونیا پس از 4 ساعت غوطه وری به ترتیب برابر 6/9، 7/8 و 8/4 میلی گرم بر سانتی متر مربع بودند. برازش مدل سینتیکی حاکی از تبعیت رفتار جذب از مدل شبه درجه دوم بود. در مجموع نتایج بیانگر بهره وری بالای غشا نانو-کامپوزیتی نایلون6/ زیرکونیا در جذب کاتیون های فلزات سنگین به دلیل یهره وری از مواضع سرامیکی با بار مخالف آلاینده بود.
-
ساخت و بررسی رفتار الکترواپتیک نانوالیاف ZnO آلاییده شده با Al
2018در سال های اخیر لایه های نازک اکسید روی (ZnO) به دلیل خواص فیزیکی، الکتریکی و شیمیایی به طور وسیعی مورد استفاده قرار گرفته اند. در این مطالعه خواص ریزساختاری و الکترواپتیک لایه های نانو ساختار اکسید روی خالص و آلاییده به آلومینیوم (AZO) (با مقادیر 2 تا 6 درصد وزنی) که به روش الکتروریسی ساخته شدند، بررسی شد. برای این منظور، ابتدا محلول پلیمری PVP/ استات روی تهیه و سپس با کنترل پارامترهای الکتروریسی و عملیات حرارتی در دمای 250 درجه سانتی گراد، پوشش اکسید روی آلاییده با مقادیر مختلف آلومینیوم سنتز شد. نتایج میکروسکوپ الکترونی روبشی نشان داد که فرایند کلسینه شدن موجب تغییر مورفولوژی ساختارهای AZO شده است. به طوری که نانوالیاف با میانگین قطر 110 نانومتر تبدیل به پوشش متشکل از نانوذرات پیوسته شدند. لایه نازک تشکیل شده دارای ظاهری شفاف و ضخامتی در حدود 875 نانومتر بود. نتایج آزمون های پراش پرتو ایکس و طیف سنج مادون قرمز در محدوده میانی نشان دادند که پس از کلسینه شدن، اکسید روی خالص با ساختاری بلوری تشکیل شده است و آلایش Al در ساختار بلوری اکسید روی بدون تشکیل فاز ثانویه انجام شده است. آلایش بیش از 2 درصد وزنی Al باعث انتقال Al3+ اضافی از مکان های بین نشین به موقعیت های تهی جای روی شد. افزودن Al موجب کوچک شدن اندازه بلور در صفحه (002) در محدوده 14 تا 16 نانومتر شد که نشان دهنده تولید AZOها با ساختاری نانو است. طیف مادون قرمز در محدوده دور نشان داد که آلایش 4 و 6 درصد وزنی Al باعث تغییر پیوند Zn-O و انتقال به سطوح بالاتر انرژی شد. نتایج بررسی فوتولومینسانس (PL) نشان داد که پیک اضافی مربوط به انتشار بنفش در نمونه های دارای Al ظاهر شد. نقص های ایجاد شده در ساختار AZO به عنوان لومینسانس عمل کرده و شدت نور در محدوده مرئی را کاهش دادند. هم چنین نتایج طیف سنجی PL نشان داد که افزودن Al با 6 درصد وزنی نه تنها موجب کاهش باند ممنوعه نسبت به نمونه های با آلایش Al کم تر شد، بلکه تابش نور مرئی را بیش تر قطبی کرده است. نتایج بررسی رفتار الکترواپتیک در محدوده UV-Vis نشان داد که انتقال نور در محدوده مرئی نمونه ها، بیش از 83 درصد بود. بررسی های بیش تر انرژی باند ممنوعه در محدوده UV و مرئی نشان داد که آلایش Al موجب کاهش باند ممنوعه لایه های اکسید روی الکتروریسی شده، از 4/3 تا حدود 05/3 الکترو
-
پبررسی رفتار الکتروشیمیایی پوشش هیدروکسی آپاتیت ایجاد شده روی آلیاژ AZ31B به روش اکسیداسیون الکترولیتی پلاسمایی در محلول شبیه ساز بدن
2018در سال های اخیر منیزیم و آلیاژهای آن در ایمپلنت ها به دلیل خواص مکانیکی شبیه به استخوان و خاصیت زیست سازگاری توسعه یافته اند. اما نرخ خورگی منیزیم و آلیاژهای آن در پلاسمای خون بسیار زیاد است و قبل از آن که بافت مورد نظر ترمیم شود منیزیم خورده شده و در بدن حل می شود. بنابراین اعمال فرآیندهای سطحی برای آلیاژهای منیزیم ضروری است. تاکنون روش های پوشش-دهی متنوعی به منظور حفاظت از منیزیم و آلیاژهای آن در مقابل خوردگی مطالعه شده است که از آن جمله می توان به روش های آبکاری شیمیایی، آندایزینگ، رسوب فاز گازی، آلیاژسازی سطحی لیزری و اکسیداسیون الکترولیتی پلاسمایی اشاره کرد. در بین این روش ها، روش اکسیداسیون الکترولیتی پلاسمایی یک فرآیند نسبتاً جدید برای حفاظت از منیزیم و آلیاژهای آن است. علاوه بر افزایش مقاومت به خوردگی، به دلیل وجود کلسیم در پوشش و در نتیجه تشکیل فاز هیدروکسی آپاتیت خاصیت زیست سازگاری آن افزایش یافته است. فرآیند اکسیداسیون الکترولیتی پلاسمایی مانند آندایزینگ معمولی شروع می شود اما با جرقه زنی پایان می یابد. خاصیت جرقه زنی باعث تبدیل لایه اکسیدی به یک پوشش سرامیکی ضخیم با خواص خوب، نظیر سختی بالا، خواص سایشی و خوردگی خوب و همچنین پیوند مستحکم با زیر لایه است. این فرآیند روشی سازگار با محیط زیست است و هیچ گونه خروجی مضری طی این فرآیند در محیط پخش نمی شود.